
Final Project - Self Balancing Robot
EENG 348/CPSC 338 Digital Systems

Henry Demarest1,2, Esteban Figueroa3

1Department of Mechanical Engineering and Materials Science, Yale University
2Department of Computer Science, Yale University

3Department of Electrical Engineering, Yale University

Our project revolves around a
popular controls problem
where a controller balances a
two-wheeled vertical robot.
This robot uses an Arduino
Nano, MPU-6050 IMU sensor, a
TB6612 Motor Driver, a 7.4V
LiPo rechargeable battery, and
two DC motors. We
programmed the Arduino in the
Arduino IDE and programmed
the controller based on IMU
accelerometer data to provide
the feedback.

Overview

Inertial Measurement Unit

H-Bridge Motor Driver

Controller

We are using two 3-6VDC motors with
a 200 RPM motor with a 1:48 gear
ratio to allow the robot to drive and
balance. Since we need to the robot
to be able to go forwards and
backwards, we are using the TB6612
H-Bridge motor driver by Adafruit.
The H-Bridge is a transistor network
which allows current to run on
forward or reverse bias. For example,
activating Q1 and Q4 allows for
current to run in one direction
through the motor, and activating Q3
and Q2 in the reverse direction.

Our MPU-6050 is a 3-axis
gyroscope and 3-axis
accelerometer which lives on
board next to the Arduino Nano
on the 2nd stage of the robot. The
orientation of our IMU calls for
using the roll orientation (Y
direction per the IMU graphic to
the right), as the acceleration
measurement. The symmetry of
the robot allows us to arbitrarily
set +Y or -Y to be forward or
backward on the system. The I2C
protocol is used to communicate
with this IMU.

Complementary Filter Equation (top) and PID controller equation (bottom)
(Source: https://www.instructables.com/Arduino-Self-Balancing-Robot-1/)

To process the sensor data and create a
motor output, IMU data is first fed
through a complementary filter. This
combines the accelerometer and
gyroscope data to create a more
consistent output, using the slowly-
drifting gyroscope reading and the
jumpy accelerometer readings. These
readings are then passed into two PID
controllers. One uses an estimated
current position of the robot to tilt the
robot back towards the center and the
other used the approximated angle to
guide the robot towards the desired
angle. Both required significant tuning.

https://www.instructables.com/Arduino-Self-Balancing-Robot-1/

